domingo, 7 de septiembre de 2014

Historia del Hormigom

Historia del Hormigón

La invención del hormigón armado se suele atribuir al constructor William Wilkinson, quien solicitó en 1854 la patente de un sistema que incluía armaduras de hierro para «la mejora de la construcción de viviendas, almacenes y otros edificios resistentes al fuego». En el 1855 Joseph-Louis Lambot publicó el libro «Les bétons agglomerés appliqués á l'art de construire» (Aplicaciones del hormigón al arte de construir), en donde patentó su sistema de construcción, expuesto en la exposición mundial en París, el año 1854, el cual consistía en una lancha de remos fabricada de hormigón armado con alambres. François Coignet en 1861 ideó la aplicación en estructuras como techos, paredes, bóvedas y tubos.

A su vez el francés Joseph Monier patentó varios métodos en la década de 1860. Muchas de estas patentes fueron obtenidas por G.A. Wayss en 1866 de las empresas Freytag und Heidschuch y Martenstein, fundando una empresa de hormigón armado, en donde se realizaban pruebas para ver el comportamiento resistente del hormigón, asistiendo el arquitecto prusiano Matthias Koenen en estas pruebas, efectuando cálculos que fueron publicados en un folleto llamado «El sistema Monier, armazones de hierro cubiertos en cemento». Que fue complementado en 1894 por Edmond Coignet y De Tédesco, método publicado en Francia agregando el comportamiento de elasticidad del hormigón como factor en los ensayos, estos cálculos fueron confirmados por otros ensayos realizados por Eberhard G. Neumann en 1890. Bauschinger y Bach comprobaron las propiedades del elemento frente al fuego y su resistencia logrando ocasionar un gran auge, por la seguridad del producto en Alemania. Fue François Hennebique quien ideó un sistema convincente de hormigón armado, patentado en 1892, que utilizó en la construcción de una fábrica de hilados en Tourcoing, Lille, en 1895.

En España, el hormigón armado penetra en Cataluña de la mano del ingeniero Francesc Macià con la patente del francés Joseph Monier. Pero la expansión de la nueva técnica se producirá por el empuje comercial de François Hennebique por medio de su concesionario en San Sebastián Miguel Salaverría y del ingeniero José Eugenio Ribera, entonces destinado en Asturias, que en 1898 construirá los forjados de la cárcel de Oviedo, el tablero del puente de Ciaño y el depósito de aguas de Llanes.

El primer edificio de entidad construido con hormigón armado es la fábrica de harinas La Ceres en Bilbao, de 1899-1900 (aún hoy en pie y rehabilitada como viviendas) y el primer puente importante, con arcos de 35 metros de luz, el levantado sobre el Nervión-Ibaizabal en La Peña, para el paso del tranvía de Arratia entre Bilbao y Arrigorriaga (desaparecido en las riadas del año 1983). Ninguna de las dos obras fue dirigida por Ribera, quien pronto se independizó de la tutela del empresario francés, sino por los jóvenes ingenieros Ramón Grotta y Gabriel Rebollo de la oficina madrileña de François Hennebique.

Diseño de estructuras de hormigón armado

Hennebique y sus contemporáneos, basaban el diseño de sus patentes en resultados experimentales, mediante pruebas de carga; los primeros aportes teóricos los realizan prestigiosos investigadores alemanes, tales como Wilhem Ritter, quien desarrolla en 1899 la teoría del «Reticulado de Ritter-Mörsch». Los estudios teóricos fundamentales se gestarán en el siglo XX.

Existen varias características responsables del éxito del hormigón armado:
²  El coeficiente de dilatación del hormigón es similar al del acero, siendo despreciables las tensiones internas por cambios de temperatura.
²  Cuando el hormigón fragua se contrae y presiona fuertemente las barras de acero, creando además fuerte adherencia química. Las barras, o fibras, suelen tener resaltes en su superficie, llamadas corrugas o trefilado, que favorecen la adherencia física con el hormigón.
²  Por último, el pH alcalino del cemento produce la pasivación del acero, fenómeno que ayuda a protegerlo de la corrosión.
El hormigón que rodea a las barras de acero genera un fenómeno de confinamiento que impide su pandeo, optimizando su empleo estructural

imagen sobre el hormigon


CURADO DEL HORMIGÓN

EL CURADO

es uno de los pasos más importantes en la construcción del hormigón, porque un curado correcto aumenta la resistencia del hormigón y la durabilidad. 
El curado es un proceso, que mantiene el buen nivel de humedad interna en el hormigón. La única variable significativa que afecta directamente la permeabilidad, la calidad y las propiedades de resistencia a la rotura del hormigón es el curado. La humedad, prolongada y minuciosa permite un buen curado y es el factor más importante en la producción de hormigón impermeable, estanco, de alta calidad, de alta resistencia. 
El curado tiene por objetivo impedir el secado prematuro del concreto, cuyas consecuencias son dobles:
  • la reacción química del agua y del cemento se interrumpe por falta del agua necesaria, de modo que el concreto no adquiere las propiedades que su composición permitiría;
  • se produce una contracción precoz, generando la formación de fisuras . Al evaporarse, el agua desarrolla fuerzas que generan, en el cemento en fase de endurecimiento, una contracción cuyo valor puede sobrepasar la resistencia a la tensión del concreto en proceso de endurecimiento.
El hormigón se endurece como resultado de la hidratación: la reacción química entre el cemento y el agua. Sin embargo, la hidratación se produce sólo si el agua está disponible y si la temperatura del hormigón se mantiene dentro de un rango adecuado. Durante el período inicial de curación de cinco a siete días después del vertido del hormigón convencional sobre la superficie la humedad debe ser mantenida para permitir el proceso de hidratación. El hormigón nuevo puede ser mojado con mangueras para su remojo, aspersores o cubierto con trapos húmedos, o puede ser recubierto con productos comercialmente disponibles diseñados para el curado, y que sellan la humedad.
Una forma de curar es prolongar la humedad al aplicar tela de arpillera húmeda a la superficie de hormigón conservando la continuamente húmedo por un período de 28 días. Diferentes investigaciones muestran que el hormigón continuamente húmedo, con un curado por un período de 28 días dio lugar a una resistencia a la compresión superior a 4.500 psi. Sin embargo, el mismo hormigón curado permitiendo que el aire de rose constantemente en el mismo período solo se lograron 2.550 psi. Además, la resistencia a la compresión a los 180 días eran en realidad más bajos para el hormigón curado al aire, 2.500 psi, y el hormigón con constante humedad durante el proceso de curado alcanzo una resistencia a la compresión máxima de más de 5.750 psi.

Mejorar el proceso de curado en húmedo

Aunque la húmeda prolongada y profunda durante el proceso de curado produce un hormigón muy superior en todos los aspectos al hormigón curado al aire, no puede producir un hormigón que impida totalmente la transmisión de vapor de agua. La interconexión de los capilares se forman en el proceso de hidratación del cemento. El lento, curado húmedo es el factor más importante en la producción de alta calidad, de alta resistencia, impermeable y estanca de hormigón, sin embargo, sin una mejora a este proceso de curación, es imposible producir hormigón que sea impermeable a la transmisión de vapor de agua.

Fraguado y endurecimiento

La pasta del hormigón se forma mezclando cemento artificial y agua debiendo embeber totalmente a los áridos. La principal cualidad de esta pasta es que fragua y endurece progresivamente, tanto al aire como bajo el agua.
El proceso de fraguado y endurecimiento es el resultado de reacciones químicas de hidratación entre los componentes del cemento. La fase inicial de hidratación se llama fraguado y se caracteriza por el paso de la pasta del estado fluido al estado sólido. Esto se observa de forma sencilla por simple presión con un dedo sobre la superficie del hormigón. Posteriormente continúan las reacciones de hidratación alcanzando a todos los constituyentes del cemento que provocan el endurecimiento de la masa y que se caracteriza por un progresivo desarrollo de resistencias mecánicas.
El fraguado y endurecimiento no son más que dos estados separados convencionalmente; en realidad solo hay un único proceso de hidratación continuo.
En el cemento portland, el más frecuente empleado en los hormigones, el primer componente en reaccionar es el aluminato tricálcico con una duración rápida y corta (hasta 7-28 días). Después el silicato tricálcico, con una aportación inicial importante y continua durante bastante tiempo. A continuación el silicato bicálcico con una aportación inicial débil y muy importante a partir de los 28 días.
El fenómeno físico de endurecimiento no tiene fases definidas. El cemento está en polvo y sus partículas o granos se hidratan progresivamente, inicialmente por contacto del agua con la superficie de los granos, formándose algunos compuestos cristalinos y una gran parte de compuestos microcristalinos asimilables a coloides que forman una película en la superficie del grano. A partir de entonces el endurecimiento continua dominado por estas estructuras coloidales que envuelven los granos del cemento y a través de las cuales progresa la hidratación hasta el núcleo del grano.
El hecho de que pueda regularse la velocidad con que el cemento amasado pierde su fluidez y se endurece, lo hace un producto muy útil en construcción. Una reacción rápida de hidratación y endurecimiento dificultaría su transporte y una cómoda puesta en obra rellenando todos los huecos en los encofrados. Una reacción lenta aplazaría de forma importante el desarrollo de resistencias mecánicas. En las fábricas de cemento se consigue controlando la cantidad de yeso que se añade al clinker de cemento. En la planta de hormigón, donde se mezcla la pasta de cemento y agua con los áridos, también se pueden añadir productos que regulan el tiempo de fraguado.
En condiciones normales un hormigón portland normal comienza a fraguar entre 30 y 45 minutos después de que ha quedado en reposo en los moldes y termina el fraguado trascurridas sobre 10 ó 12 horas. Después comienza el endurecimiento que lleva un ritmo rápido en los primeros días hasta llegar al primer mes, para después aumentar más lentamente hasta llegar al año donde prácticamente se estabiliza.

Características Fisicas

Características físicas del hormigón
Las principales características físicas del hormigón, en valores aproximados, son:
  • Densidad: en torno a 2350 kg/m³
  • Resistencia a compresión: de 150 a 500 kg/cm² (15 a 50 MPa) para el hormigón ordinario. Existen hormigones especiales de alta resistencia que alcanzan hasta 2000 kg/cm² (200 MPa).
  • Resistencia a tracción: proporcionalmente baja, es del orden de un décimo de la resistencia a compresión y, generalmente, poco significativa en el cálculo global.
  • Tiempo de fraguado: dos horas, aproximadamente, variando en función de la temperatura y la humedad del ambiente exterior.
  • Tiempo de endurecimiento: progresivo, dependiendo de la temperatura, humedad y otros parámetros.
    • De 24 a 48 horas, adquiere la mitad de la resistencia máxima; en una semana 3/4 partes, y en 4 semanas prácticamente la resistencia total de cálculo.
  • Dado que el hormigón se dilata y contrae en magnitudes semejantes al acero, pues tienen parecido coeficiente de dilatación térmico, resulta muy útil su uso simultáneo en obras de construcción; además, el hormigón protege al acero de la oxidación al recubrirlo.

FUNDAMENTOS DEL HORMIGON



FUNDAMENTOS DEL HORMIGON


El hormigón en masa es un material moldeable y con buenas propiedades mecánicas y de durabilidad, y aunque resiste tensiones y esfuerzos de compresión apreciables tiene una resistencia a la tracción muy reducida. Para resistir adecuadamente esfuerzos de torsión es necesario combinar el hormigón con un esqueleto de acero. Este esqueleto tiene la misión resistir las tensiones de tracción que aparecen en la estructura, mientras que el hormigón resistirá la compresión (siendo más barato que el acero y ofreciendo propiedades de durabilidad adecuadas).


Por otro lado, el acero confiere a las piezas mayor ductilidad, permitiendo que las mismas se deformen apreciablemente antes de la falla. Una estructura con más acero presentará un modo de fallo más dúcil (y, por tanto, menos frágil), esa es la razón por la que muchas instrucciones exigen una cantidad mínima de acero en ciertas secciones críticas.


En los elementos lineales alargados, como vigas y pilares las barras longitudinales, llamadas armado principal o longitudinal. Estas barras de acero se dimensionan de acuerdo a la magnitud del esfuerzo axial y los momentos flectores, mientras que el esfuerzo cortante y el momento torsor condicionan las características de la armadura transversal o secundaria.

Fisuras en el Hormigon

Las Fisuras en el Hormigón, son roturas que aparecen generalmente en la superficie del mismo, debido a la existencia de tensiones superiores a su capacidad de resistencia. Cuando la fisura atraviesa de lado a lado el espesor de una pieza, se convierte en grieta.
Las fisuras se originan en las variaciones de longitud de determinadas caras del hormigón con respecto a las otras, y derivan de tensiones que desarrolla el material mismo por retracciones térmicas o hidráulicas o entumecimientos que se manifiestan generalmente en las superficies libres.
La retracción térmica se produce por una disminución importante de la temperatura en piezas de hormigón cuyo empotramiento les impide los movimientos de contracción, lo que origina tensiones de tracción que el hormigón no está capacitado para absorber. En general, no conllevan riesgos estructurales y deben ser estudiados caso por caso, por ser atípicos.
Tratamiento de las Grietas
Por su naturaleza misma, ya que las grietas son debidas generalmente a fallas de diseño con insuficientes secciones de hormigón y/o armaduras de refuerzo, exigen trabajos importantes que incluyen re-calcular la estructura dañada y luego reforzar la misma.
enlaces:http://www.construmatica.com/construpedia/Fisuras_en_el_Hormig%C3%B3n